The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding

Highlights
- Upon feeding, NONO-containing speckle-like structures increase in liver cell nuclei
- The number of target RNAs bound by NONO increases upon feeding
- NONO binds and regulates the rhythmicity of metabolic genes post-transcriptionally
- NONO is required for normal glucose and lipid homeostasis in mice

Authors
Giorgia Benegiamo, Ludovic S. Mure, Galina Erikson, Hiep D. Le, Ermanno Moriggi, Steven A. Brown, Satchidananda Panda

Correspondence
steven.brown@pharma.uzh.ch (S.A.B.), satchin@salk.edu (S.P.)

In Brief
Benegiamo et al. identify a metabolic role for the nuclear RNA-binding protein NONO. Upon feeding, NONO binds to pre-mRNAs of genes involved in glucose and fat metabolism in the liver, regulating their rhythmic expression post-transcriptionally. NONO-deficient mice exhibit disruptions in this temporal regulation and shift from glucose storage to fat oxidation.

Benegiamo et al., 2018, Cell Metabolism 27, 404–418
February 6, 2018 © 2017 Elsevier Inc.
https://doi.org/10.1016/j.cmet.2017.12.010
The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding

Giorgia Benegiamo,1,2 Ludovic S. Mure,2 Galina Erikson,3 Hiep D. Le,2 Ermanno Moriggi,1 Steven A. Brown,1,4,5,* and Satchidananda Panda2,4,5,6,*

1Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
2Regulatory Biology Laboratory
3The Razavi Newman Integrative Genomics and Bioinformatics Core Facility
Salk Institute for Biological Studies, La Jolla, CA 92037, USA
4These authors contributed equally
5Senior author
6Lead Contact
*Correspondence: steven.brown@pharma.uzh.ch (S.A.B.), satchin@salk.edu (S.P.)
https://doi.org/10.1016/j.cmet.2017.12.010

SUMMARY

The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.

INTRODUCTION

Diurnal rhythms in gene expression are crucial for metabolic homeostasis. Such rhythms synchronize the transcription of genes necessary for anabolic and catabolic metabolism with periods of feeding and fasting, respectively (Panda, 2016). These oscillations are driven in part acutely in response to feeding and fasting, in part by an endogenous circadian oscillator present in nearly all cells and tissues, and in part systemically (Brown, 2016). Indeed, genetic disruption of the molecular clock or an erratic eating pattern can each disrupt the temporal coordination between metabolic demand and gene expression, leading to metabolic disease (Baron and Reid, 2014; Bass and Takahashi, 2010; Zarrinpar et al., 2016). However, mechanisms by which the feeding/fasting cycle and gene expression are temporally coordinated have not been fully elucidated.

The liver plays an important role in metabolic homeostasis, as it is the primary site for the daily metabolism of macronutrients (e.g., carbohydrates, lipids, and amino acids). In turn, glycogen is predominantly stored there during feeding, and during fasting this glycogen is largely returned to glucose each day. Consistent with this rhythmic function, ~24 hr rhythms in both mRNA and protein levels are associated with a large fraction of the liver coding genome (Hughes et al., 2009; Reddy et al., 2006; Vollmers et al., 2012; Zhang et al., 2014). Several studies have shown that the feeding/fasting cycle is the main driver of daily rhythm in mRNA levels for the liver (Atger et al., 2015; Damiola et al., 2000; Sobel et al., 2017; Vollmers et al., 2009). Whereas a number of these genes have daily expression patterns driven primarily by transcriptional rhythms, cycling of most mature mRNAs is not driven by underlying rhythms in transcription (Koike et al., 2015; Menet et al., 2012), suggesting the importance of as-yet-unknown post-transcriptional mechanisms.

Circadian rhythms in cellular function are mostly driven by a circadian oscillator composed of a cell-autonomous transcriptional-translational feedback loop in which heterodimers of the activator proteins CLOCK and BMAL bind to E-box promoters and drive the expression of the repressors CRYs (Cry1, Cry2) and PERs (Per1, Per2, Per3). CRY and PER heterodimers then translocate back into the nucleus and repress activities of the BMAL-CLOCK complex, thus establishing circadian rhythmicity in gene expression (Lowrey and Takahashi, 2011; Panda et al., 2002).

Post-transcriptional regulatory mechanisms (such as splicing, localization, polyadenylation, stabilization, and degradation) are driven by RNA-binding proteins (RBPs) that often mediate complex activities involving interactions with other proteins and RNA species (Jen et al., 2012). The RBP non-POU domain-containing octamer-binding (NONO) belongs to the Drosophila behavior human splicing (DBHS) family that includes the paralogs SFPQ and PSPC1. These predominantly nuclear proteins have two RNA-recognition motives (RRMs) and are
defined as “multifunctional,” as they regulate gene expression in numerous ways, affecting transcriptional activation and inhibition, as well as RNA splicing, stabilization, and export (Knott et al., 2016). NONO, SFPQ, and PSPC1, together with other pre-mRNA splicing factors, transcription factors, and heterogeneous nuclear ribonucleoproteins (hnRNPs), are also components of paraspeckles—subnuclear bodies assembled on the long non-coding RNA Neat1 (Fox and Lamond, 2010; Fox et al., 2002; Yamazaki and Hirose, 2015). Interestingly, NONO interacts with PER proteins and affects circadian rhythmicity in flies and in mammalian cell lines (Brown et al., 2005; Kowalska et al., 2012, 2013). A second, and likely not mutually exclusive, aspect of DBHS family proteins is their role in regulating RNA expression in response to stress stimuli (Prasanth et al., 2005).

Here we find that feeding increases the number of NONO-containing, speckle-like structures in nuclei of liver cells. NONO interacts with RNA processing factors in the liver, and the number of NONO-bound RNAs increases upon feeding. NONO primarily binds promoter-proximal introns of transcripts. A large fraction of NONO-bound RNAs encodes proteins implicated in glucose uptake and macronutrient metabolism. Furthermore, we demonstrate that NONO post-transcriptionally regulates mRNA levels of these genes in response to a nutritional stimulus. The absence of NONO-mediated regulation of target RNAs profoundly impacts metabolic health. Indeed, NONO-deficient mice exhibit impaired glucose tolerance, reduced capacity to store glycogen and lipids in the liver, and a lean phenotype. Together these results indicate that NONO coordinates the pre-mRNA processing of metabolic genes in response to nutritional stimuli. We therefore propose that post-transcriptional mechanisms directed by NONO represent an important regulatory node at the intersection between cycles of feeding/fasting and rhythmic gene expression.

RESULTS

Feeding Increases the Number of NONO-Containing, Speckle-like Structures in Nuclei of Liver Cells

Since NONO plays a role in the circadian clock and is involved in the response to stress stimuli, we analyzed NONO protein levels in the mouse liver in response to fasting and feeding. Mice were fed a normal chow only during the dark phase of a 12 hr light:12 hr dark cycle (i.e., a 12:12 LD cycle) for 1 week. Livers were then harvested after 12 hr of fasting, after 2 hr of re-feeding (i.e., 2 hr of feeding following the 12 hr fast) or 60 min after an intraperitoneal glucose injection following light-phase fasting. In these conditions, NONO protein levels remained unchanged, as shown by immunoblotting and nuclear immunostaining (Figures S1A, S1B, and S1E). Using super-resolution microscopy, however, we observed dramatic changes in NONO subnuclear localization (Figures 1A and 1D). In general, NONO was diffusely distributed throughout liver cell nuclei after fasting. After feeding, or an intraperitoneal administration of glucose, the number of NONO-containing subnuclear speckle-like structures increased (Figures 1B, 1C, 1E, and 1F). This increase in the number of speckle-like structures was not due to an increase in nuclear volume (Figures S1C, S1D, S1F, and S1G). Round-the-clock immunofluorescence in liver of ad libitum-fed mice kept in constant darkness did not show statistically significant circadian variation in NONO-containing speckle-like structures, likely due to uncontrolled feeding (data not shown). Feeding-induced speckle-like structures localized to the interchromatin space of the nucleus, spatially separated from heterochromatin-rich DAPI foci. The increased number of NONO-containing speckle-like structures in liver nuclei after feeding or an acute glucose challenge suggests that NONO may play a role in hepatic responses to nutritional stimuli.

NONO Interacts with RNA Processing Factors

Most RBPs interact with each other and with other proteins in macromolecular complexes to regulate every step of the RNA life cycle, such as transcription, splicing, transport, and translation (Gehring et al., 2017). To characterize NONO-containing macromolecular complexes in different nutritional conditions, we performed immunoprecipitation followed by mass spectrometry (IP-MS) of NONO from mouse liver nuclei collected at three different times of the day. Again, mice were fed only during the dark phase of a 12:12 light/dark (LD) cycle, and samples were collected after 10 hr of fasting (ZT10), 2 hr after re-feeding (ZT14), and toward the end of the feeding period (ZT22) (Figures S2A and S2B). We found that the most abundant interactions were common to all the three time points (Figure S2C). Among NONO-interacting proteins were the two known paralogs and direct NONO interactors: SFPQ and PSPC1. We also found that several HNRNPs, some splicing factors, RNA-binding proteins, and one of the main components of the DBC1–ZIRD complex (DBIRD) were NONO interactors (Figure S2D; Table S1). Several of these interacting factors also localize to paraspeckles (Naganuma et al., 2012; Yamazaki and Hirose, 2015) and/or were previously identified as components of messenger ribonucleoprotein complexes (mRNPs), involved in mRNA metabolism and post-transcriptional gene regulation (Close et al., 2012; Mannen et al., 2016; Sánchez-Jiménez and Sánchez-Margalet, 2013; Weidensdorfer et al., 2009). Although NONO was previously shown to interact with the PER protein complex (Brown et al., 2005), no circadian clock proteins were identified in our IP-MS analysis, suggesting that the circadian sub-complex may not be a major component of the NONO complex in the liver. This detailed characterization of NONO complexes suggests that NONO interacts with ribonucleoprotein complexes in the liver and may play a role in mRNPs assembly, RNA metabolism, and post-transcriptional gene regulation.

The Number of Transcripts Bound by NONO Increases upon Feeding

To identify RNAs bound by NONO complexes in different nutritional conditions, we performed RNA immunoprecipitation followed by sequencing (RIP-seq) of NONO from mouse liver nuclei collected after 10 hr of fasting (ZT10), 2 hr after re-feeding (ZT14), and toward the end of the feeding period (ZT22) (for mice fed during the dark phase of a 12:12 LD cycle) (Figures 2A and 2B). We identified a total of 1,140 transcripts that bound NONO during at least one of the three time points. Importantly, NONO bound more transcripts at ZT14 (2 hr after re-feeding) compared with the other two time points: NONO bound 373 transcripts at ZT10, 833 at ZT14, and 452 at ZT22 (Figure 2C; Table S2). Furthermore, at ZT14, the average size of NONO binding peaks (i.e., the number of base pairs encompassed by each peak) also
increased; average peak sizes were 2,203 ± 1,611 bp at ZT10, 3,060 ± 1,723 bp at ZT14, and 2,202 ± 1,141 bp at ZT22 (Figures 2D and 2E). This difference was confirmed when we compared only the 134 transcripts that were common to the three time points (Figure S3A). This suggests that NONO binds a higher number of RNAs at the beginning of the feeding phase and it likely binds these RNAs in bigger macromolecular complexes. Among NONO targets at ZT10 was the non-coding RNA Neat1, which serves as a scaffolding RNA for the formation of paraspeckles (Fox et al., 2002). About 80% of NONO binding sites were within introns; in particular, we found enrichment for peaks mapping to intron 1 (Figures 2F and 2G). Indeed, relative distance of the identified intron peaks from the transcription start site (TSS) normalized to gene size showed a tendency for NONO to bind regions of the RNA proximal to the TSS (Figure S3B). Moreover, NONO did not bind uniformly throughout each intron, but instead was enriched within specific regions of each bound intron (Figures 2I and S3C–S3E). In silico analyses identified 6 putative binding-site motifs significantly enriched at introns (Figure 2H). (It should be noted that although the composition of these binding site motifs was consistent across time points, more stringent mapping techniques and mutation analyses would be needed to establish more precise consensus sequences.) Together, these data suggest that NONO primarily binds to pre-mRNA and that the number of NONO-bound RNAs increases at the beginning of the feeding phase.

NONO Regulates the Rhythmicity of Its Target RNAs

Post-transcriptionally

The liver’s circadian transcriptome results from the combined actions of the circadian clock and feeding/fasting rhythms (Damiola et al., 2000; Vollmers et al., 2009). Since (1) the number of NONO-containing speckle-like structures increased in response to feeding, (2) NONO interacted with RNA-processing factors, and (3) NONO bound to a different number of genes at different times of the day, we hypothesized that NONO may contribute to the daily rhythm of hepatic gene expression. To address whether NONO contributes to rhythmic gene expression in response to feeding/fasting, we assessed diurnal liver transcriptomes in nonogt mice (i.e., mice lacking Nono mRNA and protein expression; Kowalska et al., 2012) and wild-type (WT) littermates. Nonogt mice exhibit a slight change in circadian period length.
Figure 2. NONO Preferentially Binds Introns and the Number of Bound Transcripts Increases upon Feeding

(A) Experimental design indicating the time points at which liver were collected for the RIP-seq (see text for details).
(B) Outline of the experimental methods for the NONO RIP-seq in liver nuclei (see also STAR Methods).
(C) Number of genes bound at each time point and overlap among time points.
(D) Peak size distribution at each time point, number of peaks = 380 (ZT10), 986 (ZT14), and 497 (ZT22).
(E) Average peak size for all peaks identified at each time point.
(F) Annotation of the NONO RIP-seq peaks. n = 3.
(G) Intron position distribution of the RIP-seq peaks. n = 3.
(H) Significantly enriched RNA motifs among the RIP-seq intron peaks.
(I) UCSC genome browser view of the RIP-seq reads mapping to Gck gene. Right: NONO RIP-seq peaks in Gck intron 4. Each time point is a pool of two independent RIP experiments.

Results in (E) are represented as box and whiskers: 10–90 percentile range, “+” sign represents mean value. Results in (F) and (G) are represented as mean ± SEM. Statistical analysis: one-way ANOVA, ***p < 0.0001. See also Figure S3 and Table S2.
Figure 3. NONO Regulates the Rhythmicity of Its Target RNA Post-transcriptionally

(A) Experimental design indicating the time points at which livers were collected for transcriptome analysis.

(B) Schematic of the experimental methods for the liver transcriptome (see also STAR Methods).

(C) Distribution of high throughput sequencing signal within exon (blue), intron (green), and intergenic sequences (yellow) in the nuclear RNA-seq (left) and in the total RNA-seq (right) datasets.

(D) Percentage of genes cycling at the mature mRNA level (tExon dataset) in the whole liver transcriptome (left) and among the NONO target genes (right) calculated by combining the RIP-seq and WT diurnal transcriptome datasets.

(legend continued on next page)
when placed in constant darkness, but under a 12:12 LD cycle their daily activity:rest cycle is indistinguishable from WT littermates (Kowalska et al., 2012). Mice were habituated to have food available only at lights off (ZT12–ZT24) for 1 week. During the second week, mice were collected every 2 hr throughout the 24-hr day (Figure 3A). Both total and nuclear RNAs from a pool of two biological replicates were sequenced at 2 hr resolution (Figure 3B). For statistical reasons, to determine accurate circadian phase, we favored a higher density of time points over a lower one with conventional identically timed replicates [Li et al., 2015]. In these conditions, NONO mRNA and protein levels were constant across the day (Figures S4A and S4B).

In the total-RNA fraction, the majority of reads (71%) mapped to exons, whereas in the nuclear-RNA fraction, 76% of reads mapped to introns, suggesting that the nuclear RNA is enriched in pre-mRNAs and newly transcribed RNAs (Figure 3C). Thus, for further analysis, we considered the exon FPKM (fragments per kilobase per million mapped reads) from the total-RNA mRNA (tExon) as an estimation of mature mRNA levels and the intron FPKM from the nuclear-RNA fraction (nIntron) as an approximation of pre-mRNA levels and transcriptional activity (Gaidatzis et al., 2015).

In the experimental conditions described above, 22% of the genes (3,152 out of 14,527) expressed in the liver of WT mice showed a 24-hr rhythm in mature mRNA levels (tExon dataset; Figure 3D, left), with peak mRNA levels coinciding with the end of fasting or feeding time periods (Figure S4E), in agreement with other recent studies (Atger et al., 2015; Vollmers et al., 2012). However, only 32% of these cycling mRNAs were transcribed in a cyclical fashion (nIntron dataset; Table S3). This suggests that post-transcriptional mechanisms likely account for the cycling of most mature mRNAs, as has been suggested by other recent reports (Koike et al., 2012; Menet et al., 2012). Comparing the NONO RIP targets expressed in the liver (n = 943) with the cycling transcriptome revealed that 36% (338) of these NONO targets exhibited circadian rhythm in mature mRNA levels (Figure 3D, right; Table S4). Importantly, daily fluctuations in the mature mRNA levels for these genes were altered in nono
t mice, such that mature mRNA levels for 107 genes were no longer rhythmic, and peak levels of mature mRNA for 231 genes were delayed by 2 hr on average (Figures 3E and 3G). This delay is likely induced post-transcriptionally: for the subset of genes that were rhythmic both transcriptionally (nIntron dataset) and at the level of mature mRNA accumulation (tExon dataset), 58 genes in total, the delay in peak expression between nono
t and WT mice was only observed in the tExon dataset (Figure 3F, right), whereas timing within the nIntron dataset remained identical between the two genotypes (Figure 3F, left).

Even at the genome-wide level, for genes that cycled in both WT and nono
t mice, irrespective of whether they were NONO targets, peak levels of mature mRNAs were also delayed by 1 hr on average, but peak levels of transcription were not (Figures S4C–S4F). The phase delay observed when exon sequences from the total RNA were compared with intron sequences from the nuclear RNA did not result from differences in RNA preparation, since we did not observe any delay when comparing the intron phases of expression from the nuclear and total RNA fractions (nIntron versus tIntron; Figure S4F). Together, these data suggest that (1) for NONO direct targets, the loss of NONO severely impacts both rhythmicity and phase of their mature mRNA, but not transcription of the genes themselves, and (2) the loss of NONO also indirectly affects the phase of oscillation for mature mRNAs associated with other cycling genes in the liver.

NONO Regulates Glucose-Induced Gene Expression Post-transcriptionally and Is Required for Normal Glucose Homeostasis

We have shown that the number of NONO-bound RNAs increases upon feeding and that NONO regulates the oscillation of its target mRNAs post-transcriptionally. To test the physiological relevance of NONO function, we examined the predicted functions of its rhythmic target genes. NONO target genes were significantly enriched in gene ontology terms related to metabolism (Table S5). KEGG-functional annotation of the same genes specifically revealed carbohydrate and amino acid metabolism as major functional clusters (Figures 4A and 4B; Table S5).

Consistent with the mechanistic role we propose for NONO, under a 12-hr fasting:12-hr feeding cycle, peak levels of Glucokinase (Gck) and Glucose transporter-2 (Glut2) mRNAs were delayed in nono
t mice (Figures S5A and S5E). Correspondingly, delays in these mRNA peaks affected GCK and GLUT2 protein levels in the liver, as levels of both proteins were reduced at the beginning of the feeding phase in nono
t mice (Figure 4C).

To further test and confirm our hypothesis that NONO is important for pre-mRNA processing of these transcripts, we measured their expression before and after an acute intraperitoneal injection of glucose into WT and nono
t mice (Figure 4D). Sixty minutes (T60) after glucose injection, the fold induction (compared to time 0 [T0]) for Gck- and Glut2-spliced mRNA was significantly lower in nono
t mice compared to the WT littermates. In contrast, no differences in intron induction were seen between the two genotypes, demonstrating that NONO
regulates these genes post-transcriptionally in response to glucose (Figure 4E).

Both GLUT2 and GCK bind glucose with low affinity and act as glucose sensors for the hepatocytes during the fed state, in which glucose levels rise in the blood (Figure 5A; Massa et al., 2011; Thorens and Mueckler, 2010). Thus, reduced levels of GLUT2 and GCK in nonogt mice would be predicted to cause physiological changes in glucose utilization. This is exactly what we find: nonogt mice showed increased post-prandial blood glucose levels when administered a glucose tolerance test (GTT) (Figure 5B), while their insulin sensitivity was unaffected (Figure 5C). In addition, nonogt and WT mice exhibited

Figure 4. NONO Regulates Glucose-Induced Gene Expression Post-transcriptionally
(A) Enriched KEGG pathways (Z score > 2.5) among the NONO-bound cycling genes.
(B) Glucose metabolism-related pathways enriched among the NONO-bound cycling genes. Gray squares represent pathways; pathway names are indicated in blue. NONO target genes are represented as yellow circles; for each NONO-target gene, the gene name is indicated in black. Gray arrows connect each gene to the pathways it belongs to.
(C) GCK and GLUT2 protein expression during the dark/feeding phase and protein quantification (right) at the beginning of the dark phase (ZT10–ZT16) and at the end of the dark phase (ZT18–ZT22). ZT10–ZT16, n = 4 per group; ZT18–ZT22, n = 3 per group.
(D) Experimental design for (E): in order to acutely induce Gck and Glut2 expression, mice were fasted for 12 hr and injected intraperitoneally with glucose (2 g/kg). WT and nonogt liver were collected at either T0 or T60 min after glucose injection (T60).
(E) qPCR of Gck and Glut2 intron or spliced mRNA levels at T0 and T60, n = 3–4 per group per time point.
Statistical analysis for (E): two-way ANOVA, Bonferroni post test. Statistical analysis for (C): Student’s t test. *p < 0.05. Results are represented as mean ± SEM. See also Table S5.
similar fasting glucose and insulin levels (Figures 5D and 5E). These data suggest that the impaired glucose tolerance in nonogt mice reflects the role played by NONO in regulating glucose uptake in the hepatocytes. In the liver, glucose-6-phosphate is used in glycogen synthesis, glycolysis, and the pentose phosphate pathway and is eventually stored as fat (Figure 5A). Accordingly, we measured lower levels of hepatic glycogen at the end of the feeding period in nonogt mice compared to WT controls (Figure 5F).

Changes in glucose metabolism and glycogen storage could theoretically derive from alterations either in the liver (the site of this metabolism and storage) or in the pancreas (secreting the insulin and glucagon that regulate it). To test the extent to which loss of NONO from adult mouse liver cells contributes to glucose intolerance, we restored NONO expression in nonogt mice using adeno-associated viruses (AAVs) that expressed NONO under the control of the liver-specific TBG promoter. We injected two different AAV2/8 viral vectors: one that expressed wild-type NONO and one that expressed a mutant version of NONO with four point mutations (two in each of the RRM domains) (Figures 5G and 5H). These mutations disrupt the ability of NONO to bind RNA (Kuwahara et al., 2006). Levels of AAV-derived NONO protein in liver cells were comparable to those observed in WT mice (Figure 5J). Glucose tolerance was tested in nonogt mice before and 4 weeks after AAV injection (Figure 5A). Liver-specific re-expression of WT NONO significantly improved glucose tolerance (Figure 5K), whereas this was not the case for mice expressing the NONO RRM mutant (Figure 5L). This demonstrated that NONO functions in the liver to influence whole-body glucose homeostasis and that the ability of NONO to bind RNA is required for this function. Together, these data suggest that NONO binds and post-transcriptionally regulates the expression of glucose-responsive genes in the liver and that NONO is important for whole-body glucose homeostasis and glycogen storage in hepatocytes.

Nonogt Mice Store Less Fat and Exhibit Increased Fat Catabolism

To further characterize the role of NONO in liver metabolism, we analyzed the metabolomes of fasted and re-fed animals, both nonogt and WT. Livers were collected toward the end of the fasting phase (ZT8, ZT10, and ZT12) and toward the beginning of the feeding phase (ZT14, ZT16, and ZT18). Principal component analysis of the 12 samples showed their separation along genotype and feeding condition. Consistent with our RNA analyses, we found more separation between WT and nonogt mice when the two re-fed groups were compared (Figure S6A). We found 182 significantly affected biochemicals when comparing WT and nonogt-fed groups, whereas only 86 metabolites changed in comparisons between WT and nonogt fasted groups (Figure S6B). In the fed state, nonogt livers contained significantly lower levels of the glycolytic intermediates 3-phosphoglycerate (3-PG) and phosphoenolpyruvate (PEP), as well as the pentose phosphate pathway intermediate 6-phosphogluconate (Figures S6C–S6E). In contrast, the mitochondrial TCA cycle intermediates were elevated (Figures S6F–S6I). In the transcriptome dataset, the cycling NONO target ATP-citrate-lyase (Acly) exhibited a reduced level of expression and a phase delay (Figure S5D). ACly uses citrate (an intermediate in the TCA cycle) and coenzyme A (CoA) to synthesize cytoplasmic acetyl-CoA. Accordingly, we found increased amounts of citrate, aconitate, succinate, and CoA in nonogt livers during the fed state (Figures S6F–S6I). Cytoplasmic acetyl-CoA is the building block for many molecules, including fatty acids. Another NONO target gene that is important for lipid metabolism is mitochondrial glycerol-3-phosphate acyltransferase (Gpam). GPAM catalyzes the initial and committing step in glycerolipid biosynthesis and plays a pivotal role in the regulation of cellular triacylglycerol levels. Gpam is expressed at a high level during the feeding phase; however, nonogt mice showed delayed and reduced levels of Gpam mature mRNA (Figure S5B). Accordingly, nonogt livers had reduced levels of triglycerides, reduced overall liver lipid content, and increased levels of glycerol-3-phosphate (Figures 6A, 6B, and S6J). Increases in glycerol-3-phosphate in the fasted and fed states might be due to increased breakdown of triglycerides. Indeed, we also found high levels of triglyceride catabolism intermediates (diacylglycerols, monoacylglycerols, and fatty acids) in the livers of nonogt mice during the fed state (Figure 6J).

To assess the physiological consequence of NONO deficiency, we evaluated the metabolic phenotype of nonogt mice. Nonogt mice are born at Mendelian ratio and survive normally into adulthood. At 10 weeks of age, nonogt mice weighed 10% less than WT littermates (Figure S7A). When fed a normal chow...
ad libitum, nonogt mice and WT littermates consumed equivalent amounts of food and exhibited comparable daily activity levels (Figures 6D, 6E, and S7B). Over the next 32 weeks, nonogt mice gained less weight, such that at 42 weeks they weighed 20% less than their WT littermates (Figures 6C and S7A). Body composition analysis revealed that nonogt mice accumulated less fat mass, whereas their gains in lean mass were similar to those seen in WT mice (Figures 6H and 6I). Both leptin and ghrelin levels were reduced in nonogt mice (Figures S7C and S7D).

However, since food consumption in any case was unaltered, we turned to energy utilization as the more likely source of body weight differences.

To examine whole-body energy utilization, we assessed nonogt and WT littermates using indirect calorimetry. During the fed state, the respiratory exchange ratio (RER) for both genotypes was equivalent and close to 1, indicating that carbohydrates were used as the predominant energy source. However, during the light period, when mice are usually at rest and have...
reduced food intake, the RER slowly dropped to ~0.8 in WT mice, whereas in nonogt mice, the RER rapidly dropped to 0.7 (Figure 6 J), indicating increased reliance on fatty acids as an energy source for nonogt mice. The relatively quick decline in fasting RER in nonogt mice may also indicate reduced energy storage during the feeding phase.

Nonogt mice also exhibited reduced abdominal fat deposits and smaller adipocytes (Figures 6F, 6G, and 6K).

When nonogt mice were fed a normal chow (60% of the energy coming from carbohydrates), they weighed less and had less body fat. This reduced adiposity could have resulted from a primary defect in fat absorption and storage. To test this hypothesis, we subjected nonogt and WT littermates to ad libitum feeding of a high-fat diet (HFD; 60% of the energy coming from fat) for 12 weeks. The two genotypes consumed equivalent amounts of food (Figure S7 F). After 12 weeks of a HFD, the nonogt and WT mice had equivalent body weights and whole-body fat mass (Figures S7E and S7G). As anticipated, nonogt mice fed a HFD were more glucose intolerant compared to their WT littermates (Figure S7H). This demonstrates that a HFD can compensate for the inefficient glucose uptake seen in nonogt mice fed a normal chow. Together, these data indicate that nonogt mice have three inter-related metabolic defects in the liver: (1) reduced glucose utilization in glycolytic and glycogen synthesis pathways, (2) impaired triglycerides synthesis, and (3) increased reliance on fatty acids as an energy source during fasting.

DISCUSSION

Rhythms in gene transcription are the first step toward generating oscillations in mRNA levels, but recent studies have revealed that a wide range of factors contribute to these oscillations. Regulators of transcription elongation and of RNA processing, transport, translation, and degradation may affect steady-state mRNA levels at any given time (Benegiamo et al., 2016). It has been suggested that the dynamic regulation of transcription, mRNA processing, and mRNA degradation are all required to generate high-amplitude oscillation in mRNA levels (Rabani et al., 2014).

Here we show that the RNA-binding protein NONO plays an important role in coordinating the rhythmic expression of genes involved in glucose and fat metabolism with the feeding/fasting cycle. Furthermore, NONO regulates these genes post-transcriptionally. We propose a mechanism in which NONO enhances the processing of target RNAs to allow robust in-phase oscillation and normal glucose uptake and storage in the hepatocytes. Further studies are required to understand precisely how NONO affects this process. Previous studies have shown that NONO and SFPQ interact with the carboxy-terminal domain of RNA-polymerase II, leading to the hypothesis that
these factors couple transcription to post-transcriptional events (Emili et al., 2002). Our mass-spectrometry data further support this idea, and we speculate that NONO may function as a molecular scaffold to assemble the mRNA-processing machinery on target RNAs. For example, levels of Gck-mature mRNA peak toward the end of the night, yet NONO binds to Gck pre-mRNA at all time points tested (ZT10, ZT14, and ZT22). Thus, we hypothesize that NONO primes its target pre-mRNAs for processing. In the absence of NONO, this recruitment is less efficient, leading to delays in the phase of oscillation or loss of rhythmicity.

In agreement with what has been demonstrated for NonA, the Drosophila homolog of NONO (McMahon et al., 2016), we found that NONO bound primarily to introns. Since our data further point to a role for NONO in post-transcriptional processing, it therefore might play a role in intron-mediated enhancement (IME), an unknown mechanism by which introns may increase gene expression through recruitment of splicing and mRNA export machineries (Reed and Hurt, 2002; Gallegos and Rose, 2015). Consistent with this idea, our data show that NONO preferentially bound promoter-proximal introns, and promoter-proximal introns are more likely to contain sequences important for IME (Rose et al., 2009).

One major unanswered question is how metabolic signals result in the accumulation of NONO in speckle-like structures. This question also remains for all other subnuclear structures containing NONO. One possibility is that increased transcription itself may play a role: not only transcription required for the formation of Neat1-containing paraspeckles (Mao et al., 2011), but it is also required for chromatin-modifying complexes associated with transcriptional activation (Kawaguchi et al., 2015). Since feeding in the liver is associated with an increase in cellular RNA content (Sinturel et al., 2017), the increase in speckle-like structures may be due simply to increases in transcription. Alternatively, specific phosphorylation events could play a role, as suggested in the case of MNK kinases (Buxadé et al., 2008) or during mitosis (Proateau et al., 2005).

NONO, SFPQ, and PSPC1 often function as heterodimers and have been described as multifunctional proteins whose specific role in cellular processes may depend on the molecular and cellular context (Knott et al., 2016). Several other roles have been proposed for these factors. As the principal components of nuclear paraspeckles, NONO has been postulated to play a role in nuclear RNA retention by binding to stem-loop structures in the 3' untranslated regions (UTRs) of messages (Prasanth et al., 2005). Such UTR regions can even heterologously confer circadian rhythmicity in transcript oscillations (Torres et al., 2016). Yet again, NONO and related factors have been implicated as transcriptional cofactors, binding to histone modifiers to regulate chromatin structure and circadian function (Brown et al., 2005; Duong et al., 2011). Recent research suggests that several different classes of NONO-containing nuclear speckle-like structures may exist (Li et al., 2017), and gel filtration analyses suggest that only a subset of NONO-containing speckle-like structures are circadian in nature (Brown et al., 2005). It is tempting to speculate that these different functions may exist in spatially distinct structures such as the feeding-induced speckle-like structures we describe here. Indeed, our mass-spectrometric analyses did not detect clock proteins in these feeding-induced NONO complexes, nor were chromatin-modifying complexes abundant, suggesting that they are entities different from the circadian structures described previously. It is also unclear whether these structures contain the long noncoding RNA Neat1 that defines bona fide paraspeckles.

Further studies are required to assess whether the other members of the DBHS family function with NONO to regulate metabolic homeostasis. Recent studies have shown that PSPC1 plays a role in adipose tissue development (Wang et al., 2017). It is therefore likely that DBHS proteins play complementary roles in different organs to regulate different aspects of metabolism. In this respect, NONO itself has been shown to (1) regulate phosphodiesterase mRNA splicing and degradation in human adrenocortical cells to affect glucocorticoid production (Lu and Sewer, 2015), (2) positively regulate lipogenesis in breast cancer cells through SREBP1 (Zhu et al., 2016), and (3) act as an mTOR cofactor (Amelio et al., 2007). We predict that each member of the DBHS family will have unique and common targets in each tissue and will mediate both unique and redundant functions. Here we demonstrate that NONO functions in the liver to maintain whole-organism glucose homeostasis. However, we cannot exclude the possibility that NONO plays important roles in other organs (e.g., the pancreas and muscle) to regulate responses to nutritional stimuli.

In conclusion, we report a novel role for the nuclear RNA-binding protein NONO in metabolic homeostasis. Specifically, NONO binds to pre-mRNAs encoding several key regulators of liver glucose and fat metabolism. NONO enhances the processing of these pre-mRNAs, allowing for robust daily oscillation in mRNA levels, which is necessary to store excess nutrients (as glycogen and triglycerides) during the postprandial period. NONO-deficient mice exhibit disruptions in this temporal regulation, such that animals shift from storing glucose as glycogen and fat to fat oxidation. This results in reduced glucose tolerance, reduced levels of glycogen and triglycerides in the liver, and reduced levels of body fat and body weight (Figure 7). Disruption of the temporal coordination between metabolic demand and gene expression leads to the development of metabolic diseases, like obesity and diabetes. The role of RNA-binding proteins in regulating gene expression under diverse environmental conditions is only now beginning to be elucidated. Our findings help to better understand how metabolic homeostasis is maintained in mammals and identify novel therapeutic targets for treating diabetes and other associated metabolic dysfunctions.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Mouse Models
- METHOD DETAILS
 - Liver Immunostaining
 - Speckle-Like Structures and Fluorescence Quantification
 - Immunoprecipitation from liver nuclear lysates

AUTHOR CONTRIBUTIONS

STAR+METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal rabbit IgG</td>
<td>Santa Cruz</td>
<td>Cat# Sc-2027, RRID: AB_737197</td>
</tr>
<tr>
<td>Rabbit anti-GCK</td>
<td>Santa Cruz</td>
<td>Cat# Sc-7908, RRID: AB_2107620</td>
</tr>
<tr>
<td>Rabbit anti-TBP</td>
<td>Santa Cruz</td>
<td>Cat# Sc-273, RRID: AB_2200059</td>
</tr>
<tr>
<td>Rabbit anti-GLUT2</td>
<td>ThermoFisher</td>
<td>Cat# 720238, RRID: AB_2633212</td>
</tr>
<tr>
<td>Rabbit anti-NONO</td>
<td>Steven A. Brown Laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>Alexa Fluor 680 conjugate anti-rabbit IgG</td>
<td>ThermoFisher</td>
<td>Cat# A-10043, RRID: AB_2534018</td>
</tr>
<tr>
<td>Alexa Fluor 488 conjugate anti-rabbit IgG</td>
<td>ThermoFisher</td>
<td>Cat# A-11008, RRID: AB_143165</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAV2/8.TBG.NONO</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>AAV2/8.TBG.NONOmut</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>Novo Nordisk</td>
<td>NDC 0169-3473-18</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>Sigma</td>
<td>G8270</td>
</tr>
<tr>
<td>Protein A agarose beads</td>
<td>Roche</td>
<td>11134515001</td>
</tr>
<tr>
<td>Vanadyl Ribonucleoside Complex (VRC)</td>
<td>NEB</td>
<td>S1402S</td>
</tr>
<tr>
<td>RNase OUT</td>
<td>Invitrogen</td>
<td>10777019</td>
</tr>
<tr>
<td>Octyl β-D-glucopyranoside (NOG)</td>
<td>Sigma</td>
<td>O8001</td>
</tr>
<tr>
<td>Spermine</td>
<td>Sigma</td>
<td>S3256</td>
</tr>
<tr>
<td>Spermidine</td>
<td>Sigma</td>
<td>S2626</td>
</tr>
<tr>
<td>Trizol</td>
<td>Invitrogen</td>
<td>15596018</td>
</tr>
<tr>
<td>Bolt LDS Sample Buffer</td>
<td>Invitrogen</td>
<td>B0008</td>
</tr>
<tr>
<td>Bolt Sample Reducing Agent</td>
<td>Invitrogen</td>
<td>B0009</td>
</tr>
<tr>
<td>Bolt 4-12% Bis-Tris Plus Gels</td>
<td>Invitrogen</td>
<td>NW04125BOX</td>
</tr>
<tr>
<td>1x Phosphate Buffered Saline (PBS) with 1% Casein</td>
<td>BioRad</td>
<td>1610783</td>
</tr>
<tr>
<td>M1ul</td>
<td>NEB</td>
<td>R0198S</td>
</tr>
<tr>
<td>Sall-HF</td>
<td>NEB</td>
<td>R3138S</td>
</tr>
<tr>
<td>T4 ligase</td>
<td>NEB</td>
<td>M0202S</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pierce BCA assay</td>
<td>ThermoFisher</td>
<td>23225</td>
</tr>
<tr>
<td>Triglyceride Quantification Kit</td>
<td>Abcam</td>
<td>ab65336</td>
</tr>
<tr>
<td>Ultra Sensitive Mouse Insulin ELISA kit</td>
<td>CrystalChem</td>
<td>90080</td>
</tr>
<tr>
<td>Glucose (HK) Assay Kit</td>
<td>Sigma</td>
<td>GAHK20-1KT</td>
</tr>
<tr>
<td>qScript cDNA SuperMix</td>
<td>Quantabio</td>
<td>95048</td>
</tr>
<tr>
<td>FastStart Universal SYBR Green Master Mix</td>
<td>Roche</td>
<td>04913914001</td>
</tr>
<tr>
<td>Ribo-Zero Magnetic Gold Kit</td>
<td>Illumina</td>
<td>MRZG12324</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIP-seq and liver nuclear and total transcriptome</td>
<td>This study</td>
<td>GEO: GSE98042</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C57BL/6-nono<sup>wt</sup></td>
<td>Kowalska et al., 2012</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Satchidananda Panda (satchin@salk.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Models

All animal experiments were carried out in accordance with the guidelines and with the approval of the IACUC of the Salk Institute and the Zürich Cantonal Veterinary Authority. All mice were maintained in a pathogen-free environment and housed in clear shoebox cages in groups of five animals per cage with constant temperature (20-22°C) and humidity and 12 hr:12 hr light-dark cycle. All animals had access to water at all times. Unless otherwise indicated, mice were fed ad libitum with a normal chow diet (LabDiet-5010). For the fasting/feeding experiments mice were fasted for 12 hr during the light phase (ZT0-ZT12) and fed for 12 hr during the dark phase (ZT12-ZT24). For the HFD experiments mice were fed ad libitum with a diet containing 60% fat (58Y1). Nonotmice were obtained as described previously (Kowalska et al., 2012) and were backcrossed against the C57BL/6J background for more than 10 generations. Unless otherwise indicated in the figures and figure legends, all experiments were performed in adult mice (10-20 weeks of age). Older mice were used for Figures 6A, 6F, 6G, and 6K (40-50 weeks of age). In all experiments wild-type and mutant male littermates were compared.
METHOD DETAILS

Liver Immunostaining
The livers were perfused with 2 mL of ice-cold PBS through the spleen and immediately collected. Pieces of the main liver lobes were embedded in optimal cutting temperature (O.C.T.) compound (Tissue-Plus, Scigen, 4583) and frozen at −80 °C. For cryosectioning the embedded liver was equilibrated at −20 °C in a cryostat chamber and 10 μm thick sections were cut. Liver slices were collected on 25x75x1.0 mm microscope slides (Superfrost Plus, Fisherbrand) and stored at −80 °C. For immunostaining frozen sections were thawed in a sealed environment to avoid damage by frozen water crystals. Liver sections were fixed at room temperature for 10 min in 4% PFA diluted in PBS. Sections were then washed 3 times in TBS-T (50 mM Tris, 150 mM NaCl, 0.05% Tween-20). The tissue sections were permeabilized in 1% Triton X-100 diluted in TBS (50 mM Tris, 150 mM NaCl) for 30 min at room temperature. The sections were then incubated in blocking buffer (1% BSA, 0.5% Triton X-100 in TBS) for 30 min. After the blocking step, liver sections were incubated for 1 hr with rabbit anti-NONO antibody (Kowalska et al., 2012) diluted 1:500 in blocking buffer. After 3 washes in TBS-T, the sections were incubated with the secondary antibody Alexa Fluor 488 conjugate anti-rabbit IgG (Thermo Fisher) diluted 1:1000 in blocking buffer for 30 min. Sections were washed three times with TBS-T. At the first wash DAPI was added to the washing buffer at a concentration of 0.5 μg/ml. Sections were then mounted and imaged. Images were acquired with a 63x/1.4 NA Apochromat oil objective on an LSM 880 using the Airyscan detector (Carl Zeiss Microscopy). The images were acquired in “SR mode,” which configures the 32 GaAsP detectors on the Airyscan detector as equivalent to 0.2 Airy Units. The 32-channel data were then processed using Zen software (Carl Zeiss Microscopy) (Huff, 2015). All images were acquired with a 63X objective, using 1.8% laser, 750 gain, and 0.97 μs pixel dwell time, and they were all processed with an “Airyscan parameter” (Wiener filter strength) of 4.1.

Speckle-Like Structures and Fluorescence Quantification
For image analysis Imaris software (Bitplane) was used. For the speckle-like structures quantification we used the ‘spots’ option. We considered ‘speckle-like structures’ objects within the nuclei (identified by DAPI stained areas) with an estimated diameter of 0.3 μm, ‘quality’ above 900 and ‘intensity’ above 924. The same parameters were applied to all images. Image analysis was performed automatically by Imaris software, for this reason no blinding was needed. For fluorescence intensity quantification, average intensity within the nuclei was normalized to average intensity outside the nuclei (background).

Immunoprecipitation from liver nuclear lysates
Immunoprecipitation of NONO complexes was performed from mouse liver nuclear extracts. The livers were perfused with 2 mL of ice-cold PBS through the spleen and immediately collected. Liver nuclei were isolated from an entire mouse liver as previously described (Ripperger and Schibler, 2006). Briefly the dissected mouse liver was rapidly homogenized in 5 ml of ice cold PBS and mixed to 25 ml of 2.4 M sucrose buffer (2.4 M sucrose, 150 mM glycine, 10 mM HEPES pH 7.6, 15 mM KCl, 2 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 1 mM PMSF, 5 mM β-mercaptoethanol and protease inhibitors (pepsstatin A, leupeptin, aprotonin, trypsin inhibitor)). The homogenate was layered on top of a 10 ml cushion of 2 M sucrose buffer (2 M sucrose, 10% glycerol, 125 mM glycine, 10 mM HEPES pH 7.6, 15 mM KCl, 2 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 1 mM PMSF, 5 mM β-mercaptoethanol and protease inhibitors) and centrifuged for 45 min at 24,000 rpm at 4 °C in a Beckmann SW28 rotor. Isolated liver nuclei were resuspended in 800 μl of Nuclei Dilution Buffer (100 mM KCl, 0.2 mM EDTA, 20% glycerol, 20 mM HEPES pH 7.6, 1 mM PMSF, 5 mM β-mercaptoethanol and protease inhibitors) and centrifuged at 5000 rpm for 30 s. The nuclei pellet was lysed in nuclei lysis buffer (25 mM Tris:HCl pH 7.4, 187.5 mM NaCl, 2.5 mM EDTA, 10% NOG and protease inhibitors) and incubated for 20 min on ice. Lysates were centrifuged at 10000 rpm for 10 min at 4 °C and the protein concentration in the supernatant was measured with Pierce BCA assay (Thermofisher) following manufacturer’s instructions. To immunoprecipitate NONO complexes, 600 μg of nuclear protein lysate were incubated with 10 μl of protein A agarose beads cross-linked to polyclonal rabbit anti-NONO antibody (Kowalska et al., 2012) for 2 hr at 4 °C. Immunoprecipitated NONO complexes were washed 3 times with IP washing buffer (75 mM Tris: HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 0.1% NOG and protease inhibitors) and eluted with 0.1 M glycine pH 2.5. After elution the acidic glycine was neutralised with tris-base.

Mass Spectrometry Analysis
Mass spectrometry analysis was performed as described previously (Ma et al., 2016). Samples were precipitated by methanol/ chloroform. Dried pellets were dissolved in 8 M urea/100 mM TEAB, pH 8.5. Proteins were reduced with 5 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma-Aldrich) and alkylated with 50 mM chloroacetamide (Sigma-Aldrich). Proteins were digested overnight at 37 °C in 2 M urea/100 mM TEAB, pH 8.5, with trypsin (Promega). Digestion was quenched with formic acid, 5% final concentration. The digested samples were analyzed on a Fusion Orbitrap tribrid mass spectrometer (Thermo). The digest was injected directly onto a 30 cm, 75 μm ID column packed with BEH 1.7 μm C18 resin (Waters). Samples were separated at a flow rate of 200 nl/min on a nLC 1000 (Thermo). Buffer A and B were 0.1% formic acid in water and acetonitrile, respectively. A gradient of 1%–25% B over 90 min, an increase to 40% B over 30 min, an increase to 90% B over another 10 min and held at 90% B for a final 10 min of washing was used for 140 min total run time. Column was re-equilibrated with 20 μl of buffer A prior to the injection of sample. Peptides were eluted directly from the tip of the column and nanosprayed directly into the mass spectrometer by application of 2.5 kV voltage at the back of the column. The Orbitrap Fusion was operated in a data dependent mode. Full MS3 scans were collected in the Orbitrap at 120 K resolution with a mass range of 400 to 1600 m/z and an AGC target of 5e5. The cycle time was set to 3 s, and...
within this 3 s the most abundant ions per scan were selected for CID MS/MS in the ion trap with an AGC target of 1e-4 and minimum intensity of 5000. Maximum fill times were set to 50 ms and 100 ms for MS and MS/MS scans respectively. Quadrupole isolation at 1.6 m/z was used, monoisotopic precursor selection was enabled and dynamic exclusion was used with exclusion duration of 5 s. Protein and peptide identification were done with Integrated Proteomics Pipeline – IP2 (Integrated Proteomics Applications). Tandem mass spectra were extracted from raw files using RawConverter (He et al., 2015) and searched with ProLuCID (Xu et al., 2015) against mouse UniProt database. The search space included all fully tryptic and half-tryptic peptide candidates. Carbamidomethylation on cysteine was considered as a static modification. Data were searched with 50 ppm precursor ion tolerance and 600 ppm fragment ion tolerance. Data were filtered to 10 ppm precursor ion tolerance post search. Identified proteins were filtered using DTASelect (Tabb et al., 2002) and utilizing a target-decoy database search strategy to control the false discovery rate to 1% at the protein level. Interactors were sorted by average emPAI (Ishihama et al., 2005). The top 50 proteins (excluding contaminants and ribosomal proteins) were selected.

Native RNA-Immunoprecipitation (RIP)
RIP was performed in native conditions as previously described (Keene et al., 2006; Zhao et al., 2008, 2010), using one mouse liver nuclear lysate per IP. The livers were perfused with 2 mL of ice-cold PBS through the spleen and immediately collected. Liver nuclei isolation from mouse liver has been previously described (Ripperger and Schibler, 2006); briefly the dissected mouse liver was rapidly homogenized in 5 ml of ice cold PBS and mixed to 25 ml of 2.4 M sucrose buffer (2.4 M sucrose, 150 mM glycine, 10 mM HEPES pH 7.6, 15 mM KCl, 2 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 1 mM PMSF, 1 mM DTT, 400 μM VRC and protease inhibitors (pepsatin A, leupeptin, aprotinin, trypsin inhibitor)). The homogenate was layered on top of a 10 ml cushion of 2 M sucrose buffer (2 M sucrose, 10% glycerol, 125 mM glycine, 10 mM HEPES pH 7.6, 15 mM KCl, 2 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 1 mM PMSF, 1 mM DTT, 400 μM VRC and protease inhibitors) and centrifuged for 45 min at 24,000 rpm at 4°C in a Beckmann SW28 rotor. Isolated liver nuclei were resuspended in Nuclei Dilution Buffer (100 mM KCl, 0.2 mM EDTA, 20% glycerol, 20 mM HEPES pH 7.6, 1 mM PMSF, 1 mM DTT, 400 μM VRC, 80 U/ml RNase OUT and protease inhibitors). Liver nuclei were lysed in Polysome lysis buffer (100 mM KCl, 5 mM MgCl₂, 10 mM HEPES pH 7.0, 0.5% NP40, 1 mM DTT, 80 U/ml RNase OUT, 400 μM VRC and protease inhibitors) and incubated 20 min on ice. Lysate was centrifuged and protein concentration in the supernatant was measured with Pierce BCA assay (Thermofisher). 0.5mg of protein were incubated with 40μl of protein A agarose beads pre-coated with 10 μg of polyclonal rabbit anti-NONO antibody (Kowalska et al., 2012) or normal rabbit IgG (sc-2027) for 2 hr at 4°C. Before the incubation, 1/10 of the supernatant was put aside to be used as input. After incubation samples were washed 4 times with NT2 buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM MgCl₂, 1% Triton X-100). Immunoprecipitated RNA and input RNA were extracted using Trizol reagent (Invitrogen).

RNA Extraction
For RNA extraction the livers were perfused with 2 mL of ice-cold PBS through the spleen and immediately collected. For total liver RNA extraction pieces from the main liver lobes were ground to a powder in liquid nitrogen. About 10 mg of tissue were used for RNA extraction using Trizol reagent (Invitrogen). For nuclear RNA extraction liver nuclei were isolated as described above (see Native RNA-immunoprecipitation section). The nuclei pellet was rapidly resuspended in Trizol reagent (Invitrogen) and purified.

High-Throughput RNA Sequencing (RNA-seq)
Liver total, nuclear and RIP purified RNA were used for RNA-seq. RNA from two biological replicates per time point was pooled prior to library preparation. Libraries were prepared using Illumina’s TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold according to manufacturer’s instructions. In brief, rRNA was depleted from total RNA (1 μg) by using subtractive hybridization. The RNA was then fragmented by metal-ion hydrolysis and subsequently converted to cDNA using SuperScript II. The cDNA was then end-repaired, adenylated, and ligated with Illumina sequencing adapters. Finally, the libraries were enriched by PCR amplification. All sequencing libraries were then quantified, pooled, and sequenced at single-end 50 base-pair (bp) on Illumina HiSeq 2500 at the Salk NGS Core. Each library was sequenced on average 20 million reads. Raw sequencing data were demultiplexed and converted into FASTQ files using CASAVA (v1.8.2).

RNA-Seq and RIP-Seq Data Analysis
Sequenced reads were quality-tested using FASTQC (available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and aligned to the mm10 mouse genome using the STAR aligner (Dobin et al., 2013) version 2.4.0k. Mapping was carried out using default parameters (up to 10 mismatches per read, and up to 9 multi-mapping locations per read). For transcriptome data analysis, nuclear RNA-seq and total RNA-seq normalized gene expression (FPKM) was quantified across all gene exons and introns separately, using the top-expressed isoform as a proxy for gene expression. For the RIP-seq analysis, reads uniquely mapping to the genome were used for peak calling with Homer (Heinz et al., 2010) assuming the size of 500, extending the peaks to cover the full enriched region, assuming a fold enrichment of at least 2 over input reads, a poisson p value threshold relative to input count of 1e-4. The peaks that had less then 1.5 fold enrichment over IgG control and less the 200 tag count were filtered out. Homer was also used to generate normalized read count density tracks for visualization of peaks, motif enrichment analysis, and peak annotation. Motif enrichment analysis was carried out for the peak regions found in introns, searching for motif lengths of 8, 10, and 12, or using a set of all vertebrate motifs known to Homer and using default values for all other parameters.
Statistical Analysis of Rhythmic Gene Expression
All RNA-seq samples exhibited a relatively similar expression profile, reflecting the low variation in sequencing depth between the samples (total RNA-seq samples 17.4x10^6 ± 4.1x10^6 uniquely mapped reads, nuclear RNA-seq samples 19.7x10^6 ± 4.4x10^6 uniquely mapped reads). We compared FPKM values from nuclear Introns and Exons as well as total Introns and Exons separately in both WT and nono^pt animals based on a common list of 20770 genes. Only genes with an average FPKM value ≥ 0.3 over the 12 time points were considered as expressed. We then used meta2d, a function of the R package MetaCycle, to evaluate periodicity in the RNA seq data (Wu et al., 2016). Briefly, meta2D incorporates ARSER (Yang and Su, 2010), JTK_CYCLE (Hughes et al., 2010), and Lomb-Scargle (Glynn et al., 2006) and it implements N-version programming concepts to integrate their results (p and q values, period, phase, and amplitude, see Table S3). Transcripts were considered to be rhythmically expressed when the integrated p value was < 0.05. The different analyses were run on homemade MATLAB (MathWorks) programs.

Gene Ontology and Pathway Over-Representation Analysis (ORA)
For gene ontology and pathway ORA analysis GO-Elite was used as previously described (Zambon et al., 2012). 2000 permutations, Z-score cut-off of 1.96, and permuted p value cut-off of 0.05 were used. Ontology terms were sorted by Z-score.

Gene Expression Analysis by RT-qPCR
Total RNA was prepared from WT and nono^pt livers as described above and quantified using Nanodrop 2000 spectrophotometer (ThermoFisher). 1 μg of RNA was reverse transcribed using qScript cDNA SuperMix (QuantaBio) in a final volume of 20 μl, according to manufacturer’s instructions. Reverse transcribed RNA was diluted 1:6 and 25 ng of cDNA were used in qPCR reactions. qPCR reactions were prepared using the FastStart Universal SYBR Green Master Mix (Roche). The sequences of the primers used are listed in Table S6. Reactions were run on a 7900HT Fast Real-Time PCR System (ThermoFisher) by the Functional Genomics Core Facility of the Salk Institute. Gene expression was normalized to 18S RNA and quantified using the comparative CT method.

Western Blotting
For protein extraction, 10-20 mg of frozen liver powder were homogenized in RIPA lysis buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 140 mM NaCl and protease inhibitor cocktail). Samples were incubated with agitation for 30 min at 4°C and clarified by centrifugation and at 13000 rpm for 10 min at 4°C. The protein concentration in the supernatant was determined using the BCA assay (Pierce). Equal amounts of protein (40 μg) were heat-denatured in Bolt LDS Sample Buffer (after addition of Bolt Sample Reducing Agent, ThermoFisher), resolved by SDS-PAGE using Bolt 4%–12% Bis-Tris Plus Gels (ThermoFisher), and transferred to a nitrocellulose membrane using the iBlot Dry Blotting system (ThermoFisher). The membranes were blocked in 1X PBS 1% Casein Blocker (BioRad) diluted 1:10 for 1 hr at room temperature and then incubated with antibodies against NONO (rabbit polyclonal (Kowalska et al., 2012)), GCK (rabbit polyclonal, sc-7908), GLUT2 (rabbit polyclonal, ThermoFisher 720238) and TBP (rabbit polyclonal, sc-273). Alexa Fluor 680 conjugate anti-Rabbit IgG (ThermoFisher, A-10043) was used as secondary antibody. Membrane-bound immune complexes were detected by Odyssey Imaging Systems (LI-COR Biosciences). Quantification was performed using Image Studio software (LI-COR Biosciences). Data were normalized to TBP protein expression.

GTT and ITT
For GTT and ITT mice were fasted for 12 hr during the light phase (ZT0-ZT12). Glucose (2 g/kg for mice on normal chow, 1 g/kg for mice on HFD) or insulin (0.5 U/kg body weight) were injected intraperitonally. Blood glucose level was measured using Nova Max plus glucose meter prior to injection and after 15, 30, 60, 90 and 120 min after injection. In case of a technical problem with i.p. injection (i.e., no increase or decrease in blood glucose after glucose or insulin injection respectively), mice were excluded from the analysis or re-tested.

Blood Measurements
For all blood measurements mice were fasted for 12 hr during the light phase (ZT0-ZT12). Blood glucose content was measured through tail vein bleeding using the Nova Max plus glucose meter. Serum insulin levels were determined using Ultra Sensitive Mouse Insulin ELISA Kit (Crystal Chem), according to manufacturer’s instructions. Whole blood was withdrawn from the tail vein, and serum was separated by centrifugation. 5 μL of serum were used for quantification. Leptin and ghrelin levels were determined using Bio-Plex Pro Mouse Diabetes 8-Plex Assay (Bio-rad) following manufacturer’s instructions. Whole blood was withdrawn from the tail vein, and serum was separated by centrifugation and diluted 4-fold for quantification.

Liver Glycogen Quantification
Liver glycogen content was assayed as previously described (Passonneau and Lauderdale, 1974). Liver samples were ground in liquid nitrogen and 15-20 mg of liver powder was placed in 0.5 ml of 2 M HCl and incubated at 100°C for 1 hr. After neutralization with an equal volume of 2 M NaOH, the liberated glucose units were assayed enzymatically using the glucose (hk) assay kit (GAHK20, sigma). Glycogen content was expressed as micromoles of glucosyl units liberated per gram wet liver weight.
Adeno-Associated Viruses (AAV) Strains, Propagation and Injection

Viruses were derived from pENN.AAV.TBG.PI, an adeno-associated virus, serotype 8 with a TBG promoter (Hogan et al., 2015). Briefly, 1-2 µg of pENN.AAV.TBG.PI were digested with enzymes MluI and SalI (New England Biolabs). Meanwhile, the same amount of pUC57 constructs expressing either WT NONO (pUC57.NONO) or NONO with mutations F113A, F115A, K192A and I194A (pUC57.NONOmut) were also digested with MluI and SalI. The pUC57.NONO and pUC57.NONOmut constructs were produced by GenScript. The digested pENN.AAV.TBG.PI was ligated with the WT or mutant NONO inserts using T4 ligase (New England Biolabs) and transformed in One Shot TOP10 Chemically Competent E. coli (Invitrogen). The vectors were amplified using endotoxin-free maxi prep kit (QIAGEN). The amplified vector sequences were verified by sequencing and checked for recombination prior to virus packaging. The resulting vectors (pENN.AAV.TBG.PI.NONO and pENN.AAV.TBG.PI.NONOmut) were packaged by the Salk Institute Gene Transfer Targeting and Therapeutics Core. The amplified viruses are referred to as AAV8.NONO and AAV8.NONOmut. Mice received a single tail vein injection of 10^{11} genome copies of either one of the described viral vectors.

Oil-Red-O Staining

Oil-red-o staining was performed as previously described (Mehlem et al., 2013). Briefly, mice were sacrificed and the liver was perfused with ice-cold 1XPBS to remove the excess of blood. Pieces from the main liver lobes were embedded in optimal cutting temperature (O.C.T.) compound (Tissue-Plus, Scigen, 4583) and frozen at −80°C. For cryosectioning the embedded liver was equilibrated at −20°C in a cryostat chamber and 14 µm thick sections were cut. Unfixed tissue slides were stained with ORO and images were taken with a Zeiss VivaTome microscope at a 20X magnification. 10 images were taken per mouse and ImageJ was used for quantification of liver lipid content.

Liver Triglycerides Quantification

Livers were collected from *ad libitum* fed mice. The livers were perfused with 2 mL of ice-cold PBS through the spleen and immediately collected. For triglycerides quantification, Triglyceride Quantification kit (Abcam) was used, following manufacturer’s instructions. Briefly 100 mg of liver powder were homogenized in 5% NP-40 using a dounce homogenizer. The samples were then heated to 80-100°C for 2-5 min and cooled down to room temperature. The heating step was repeated one more time and the samples were centrifuged at top speed for 2 min. Supernatants were diluted 1:10 before proceeding with the assay.

Body Composition

Magnetic resonance imaging scans for fat and lean mass were performed using an Echo MRI-100 instrument according to the manufacturer's instructions.

Indirect Calorimetry

Mice were held in standard temperature conditions (20-22°C) and individually housed for at least 3 days before calorimetry experiments. Food intake, locomotor activity, oxygen consumption, and carbon dioxide production were simultaneously measured for individually housed mice with a LabMaster system (TSE Systems). Data were collected for 3-4 days and analyzed.

Histology

Mouse abdominal fat tissue was fixed in 10% formalin and paraffin embedded. Sections (6 µm) were used for hematoxylin and eosin staining.

Metabolomics Analysis

Frozen liver powder aliquots were used for detection and relative quantification of metabolites by Metabolon as described (Evans et al., 2009). The dataset comprises a total of 588 compounds of known identity (named biochemicals). An identical mass-equivalent of each liver was extracted and run across the platform; no additional normalization was applied prior to statistical analysis. Following log transformation and imputation of missing values, if any, with the minimum observed value for each compound, ANOVA contrasts were used to identify biochemicals that differed significantly between experimental groups. Only biochemicals with p ≤ 0.05 were considered statistically significant. Analysis by two-way ANOVA identified biochemicals exhibiting significant interaction and main effects for experimental parameters of genotype and treatment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters, including the exact value of n, descriptive statistics, and statistical significance are reported in the method details, figures, and the figure legends. All samples represent biological replicates. Unless otherwise specified in figure legends, all values shown in graphs are represented as mean ± SEM. For statistical significance of the differences between the means of two groups, we used Student’s t test. F test was used to assess equal variances between groups, if variances differed significantly an unpaired t test with Welch’s correction was used. Statistical significance of differences among multiple groups (≥3) was calculated by performing ANOVA multiple comparisons. Statistical tests were performed using Graph Pad Prism 5. Unless otherwise
indicated in the method details, no inclusion or exclusion criteria were applied to any data. All image analyses were performed using automatic programs applying the same analysis parameters to all images.

DATA AND SOFTWARE AVAILABILITY

The data discussed in this study have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) are accessible through the accession number GEO: GSE98042.